Claude Code Best Practices: Security, Performance & Teams
By Learnia Team
Claude Code Best Practices: Security, Performance & Teams
This article is written in English. Our training modules are available in French.
Claude Code is powerful—but power requires responsibility. This guide covers battle-tested practices for security, performance, and team collaboration. Whether you're a solo developer or leading an enterprise team, these patterns will help you use Claude Code effectively and safely.
Security Best Practices
1. Never Trust Unreviewed AI Output
Claude is highly capable, but it can make mistakes. Always review before:
- →Committing code to production branches
- →Running commands with elevated privileges
- →Modifying configuration files
- →Accessing production databases
Pattern: Review Gates
# Always create PRs, never push directly
git checkout -b feature/ai-generated
claude -p "Implement the feature"
git add -A && git commit -m "AI-generated implementation"
gh pr create --title "Review: AI Implementation"
2. Configure Strict Permissions
Default to minimal permissions:
// .claude/settings.json
{
"permissions": {
"mode": "ask",
"deny": [
"Bash(rm:-rf*)",
"Bash(sudo:*)",
"Bash(chmod:777*)",
"Bash(*:*prod*)",
"Bash(*:*production*)",
"Edit(.env*)",
"Edit(**/*.pem)",
"Edit(**/*secret*)",
"Read(**/*.pem)",
"Read(.env*)"
],
"allow": [
"Read(src/**)",
"Read(tests/**)",
"Edit(src/**)",
"Edit(tests/**)",
"Bash(npm:test)",
"Bash(npm:lint)",
"Bash(git:status)",
"Bash(git:diff*)"
]
}
}
See Claude Code Permissions: Deny, Allow & Ask Modes Explained.
3. Protect Secrets
Never expose credentials to Claude:
<!-- CLAUDE.md -->
## Security Rules
NEVER:
- Read or display .env files
- Access files in secrets/ directory
- Include API keys, tokens, or passwords in output
- Run commands that expose environment variables
Environment Isolation:
# Create a Claude-specific env without secrets
cat .env | grep -v "API_KEY\|SECRET\|PASSWORD" > .env.claude
export $(cat .env.claude | xargs)
claude
4. Use Sandbox Mode for Untrusted Operations
For autonomous or experimental work:
claude --sandbox
Sandbox mode:
- →Restricts filesystem to project directory
- →Blocks network access (except localhost)
- →Prevents system command execution
- →Isolates from host environment
5. Audit Trail
Log all Claude actions:
// .claude/settings.json
{
"hooks": {
"PostToolUse": [{
"matcher": "*",
"command": "python .claude/hooks/audit.py"
}]
}
}
# .claude/hooks/audit.py
import json
import sys
from datetime import datetime
data = json.loads(sys.stdin.read())
log_entry = {
"timestamp": datetime.now().isoformat(),
"tool": data.get("tool_name"),
"input": data.get("tool_input"),
"user": os.environ.get("USER")
}
with open(".claude/audit.log", "a") as f:
f.write(json.dumps(log_entry) + "\n")
print(json.dumps({"status": "logged"}))
6. Version Control Everything
Track all Claude-related configuration:
git add .claude/
git add CLAUDE.md
git commit -m "Add Claude Code configuration"
This ensures:
- →Consistent settings across team
- →Audit trail for config changes
- →Easy rollback if needed
Performance Optimization
1. Manage Context Efficiently
Claude's context window is limited. Optimize usage:
Use
proactively:/compact
> /compact focus on current feature work
Add only relevant directories:
> /add-dir src/auth # Good: specific
> /add-dir src # Bad: too broad
Use CLAUDE.md strategically:
<!-- CLAUDE.md - Keep under 1000 words -->
## Project Overview
Brief description only.
## Key Conventions
Only essential patterns.
## Current Focus
What we're working on now.
2. Choose the Right Model
| Scenario | Model | Why |
|---|---|---|
| Quick questions | | Fast, cheap |
| Code generation | | Balanced |
| Complex refactoring | | Most capable |
| Large codebase analysis | + sub-agents | Parallel processing |
> /model haiku
> Quick question: what's the syntax for...?
> /model opus
> Refactor the entire authentication system
3. Leverage Sub-Agents for Large Tasks
Don't overload a single context:
> Use sub-agents to analyze each module:
- Agent 1: src/auth
- Agent 2: src/api
- Agent 3: src/components
Synthesize findings after.
See Claude Code Sub-Agents: Orchestrating Complex Tasks.
4. Cache Expensive Operations
For automation scripts:
import { createHash } from "crypto";
import { readFileSync, writeFileSync, existsSync } from "fs";
function getCached(prompt: string) {
const hash = createHash("md5").update(prompt).digest("hex");
const cachePath = `.claude/cache/${hash}.json`;
if (existsSync(cachePath)) {
return JSON.parse(readFileSync(cachePath, "utf-8"));
}
return null;
}
function setCache(prompt: string, result: any) {
const hash = createHash("md5").update(prompt).digest("hex");
writeFileSync(`.claude/cache/${hash}.json`, JSON.stringify(result));
}
5. Batch Similar Operations
Instead of:
> Add tests to file1.ts
> Add tests to file2.ts
> Add tests to file3.ts
Do:
> Add tests to file1.ts, file2.ts, and file3.ts
Or use parallel processing:
> Use sub-agents to add tests to each file in src/services/
6. Use Skills for Repeated Tasks
Save and reuse patterns:
> Save this deployment process as a skill
Saved skill: deploy-staging
Next time just say: "deploy to staging"
See Agent Skills in Claude Code: Extend Claude's Capabilities.
Team Collaboration
1. Standardize CLAUDE.md
Create a template for all projects:
<!-- .claude/templates/CLAUDE.md -->
# Project: [NAME]
## Overview
[Brief description]
## Tech Stack
- Framework:
- Language:
- Database:
## Conventions
### File Structure
[Describe structure]
### Naming
- Components: PascalCase
- Functions: camelCase
- Files: kebab-case
### Code Style
[Link to style guide]
## Current Sprint
[Active work focus]
## Off-Limits
[Things Claude should never do]
2. Share Custom Commands
Create team-wide commands:
<!-- .claude/commands/team/code-review.md -->
---
description: Team standard code review
---
Review this code following our team standards in CONTRIBUTING.md.
Check for:
1. Style guide compliance
2. Test coverage requirements
3. Documentation requirements
4. Security checklist items
Format output as a PR review comment.
Commit to repo:
git add .claude/commands/
git commit -m "Add team Claude commands"
3. Define Team Permissions
Project-level permission baseline:
// .claude/settings.json (committed)
{
"permissions": {
"deny": [
"Bash(npm:publish*)",
"Bash(git:push --force*)",
"Bash(git:push -f*)",
"Edit(.env*)",
"Edit(**/production/**)"
]
}
}
Individual overrides in user settings only.
4. Document AI Contributions
Use consistent commit messages:
git commit -m "feat: add user profile [AI-assisted]"
git commit -m "fix: resolve auth bug [AI-generated]"
Or use Co-authored-by:
git commit -m "feat: new feature
Co-authored-by: Claude <claude@anthropic.com>"
5. Code Review AI Output
Establish review requirements:
# .github/CODEOWNERS
# AI-generated code requires senior review
*.ai-generated.* @senior-devs
Or use labels:
# .github/workflows/ai-review.yml
- name: Flag AI-generated PRs
if: contains(github.event.pull_request.body, 'AI-generated')
run: gh pr edit --add-label "needs-senior-review"
6. Maintain Skill Library
Central repository of team skills:
development/
- →
create-component.yaml - →
create-endpoint.yaml - →
create-test.yaml
devops/
- →
deploy-staging.yaml - →
deploy-production.yaml
review/
- →
code-review.yaml - →
security-review.yaml
Install in projects:
git submodule add git@github.com:org/team-claude-skills.git .claude/team-skills
Production Deployment
1. CI/CD Integration
Safe automation pattern:
# .github/workflows/claude-review.yml
name: AI Review
on:
pull_request:
types: [opened, synchronize]
jobs:
review:
runs-on: ubuntu-latest
permissions:
contents: read
pull-requests: write
steps:
- uses: actions/checkout@v4
- name: AI Code Review
run: |
claude --print --dangerously-skip-permissions \
-p "Review changes for issues" > review.md
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
- name: Post Review
run: gh pr comment --body-file review.md
See Claude Code GitHub Actions: AI-Powered CI/CD Automation.
2. Rate Limiting
Prevent runaway costs:
import Bottleneck from "bottleneck";
const limiter = new Bottleneck({
reservoir: 1000, // Daily limit
reservoirRefreshAmount: 1000,
reservoirRefreshInterval: 24 * 60 * 60 * 1000,
maxConcurrent: 5
});
export async function claudeRequest(prompt: string) {
return limiter.schedule(() => callClaudeAPI(prompt));
}
3. Cost Monitoring
Track usage:
// Track every API call
async function trackedCall(prompt: string) {
const start = Date.now();
const response = await client.messages.create({...});
await metrics.record({
inputTokens: response.usage.input_tokens,
outputTokens: response.usage.output_tokens,
duration: Date.now() - start,
model: response.model,
cost: calculateCost(response.usage)
});
return response;
}
4. Fallback Strategies
Handle API failures gracefully:
async function resilientCall(prompt: string) {
try {
return await callClaude(prompt, "opus");
} catch (error) {
if (error.status === 529) { // Overloaded
console.log("Falling back to sonnet");
return await callClaude(prompt, "sonnet");
}
throw error;
}
}
5. Monitoring & Alerting
// Monitor key metrics
const metrics = {
apiErrors: new Counter("claude_api_errors"),
latency: new Histogram("claude_latency_ms"),
tokenUsage: new Counter("claude_tokens"),
costAccumulated: new Gauge("claude_cost_usd")
};
// Alert on anomalies
if (metrics.apiErrors.rate(1h) > 10) {
alert("High Claude API error rate");
}
if (metrics.costAccumulated.value > DAILY_BUDGET) {
alert("Claude daily budget exceeded");
disableAutoReviews();
}
Prompt Engineering Tips
1. Be Specific
❌ "Fix the bug"
✅ "Fix the null pointer exception in src/auth/login.ts:45
where user.email can be undefined after failed OAuth"
2. Provide Context
❌ "Add validation"
✅ "Add Zod validation to the user registration endpoint.
We use Zod for all input validation in this project.
See src/api/products/route.ts for an example pattern."
3. Specify Output Format
> Return the analysis as JSON:
{
"issues": [{"file": "string", "line": number, "severity": "high|medium|low", "message": "string"}],
"summary": "string"
}
4. Use Constraints
> Refactor this function with these constraints:
- Keep the public API unchanged
- Don't add new dependencies
- Maintain O(n) time complexity
- Keep the implementation under 50 lines
5. Iterate
Start broad, then refine:
> Analyze this codebase for performance issues
[Review output]
> Focus on the database queries you identified.
Show me the specific N+1 query problems.
[Review output]
> Generate fixes for the top 3 issues
Common Pitfalls to Avoid
1. Over-Automation
Don't: Automate everything without oversight Do: Keep humans in the loop for important decisions
2. Blind Trust
Don't: Accept all AI suggestions without review Do: Treat AI output as first draft that needs review
3. Context Overload
Don't: Add entire codebase to context Do: Focus on relevant files and directories
4. Vague Prompts
Don't: "Make it better" Do: "Improve performance by reducing API calls in the render cycle"
5. Ignoring Errors
Don't: Retry failed operations blindly Do: Analyze failures and adjust approach
6. Skipping Testing
Don't: Deploy AI-generated code without tests Do: Always verify with automated and manual testing
Checklist: Production Readiness
Before using Claude Code in production:
- →
Security
- → Permissions configured restrictively
- → Secrets protected from access
- → Audit logging enabled
- → Sandbox mode for untrusted operations
- →
Team
- → CLAUDE.md standardized
- → Custom commands shared
- → Review process defined
- → Commit conventions established
- →
Operations
- → Rate limiting configured
- → Cost monitoring active
- → Fallback strategies implemented
- → Alerting configured
- →
Quality
- → AI output review required
- → Testing requirements defined
- → Documentation updated
- → Rollback plan exists
Key Takeaways
- →
Security first: Configure strict permissions and protect secrets.
- →
Optimize context: Be selective about what Claude sees.
- →
Standardize for teams: Share configurations, commands, and skills.
- →
Review everything: AI output is a first draft, not final code.
- →
Monitor in production: Track usage, costs, and errors.
Master Responsible AI Development
These best practices are part of a broader approach to responsible AI use. Learn the full framework in our ethics module.
In our Module 8 — Safety & Ethics, you'll learn:
- →Comprehensive AI safety frameworks
- →Ethical considerations in AI development
- →Risk assessment and mitigation
- →Building trustworthy AI systems
Module 8 — Ethics, Security & Compliance
Navigate AI risks, prompt injection, and responsible usage.